Calculate the angle that the planes form:
$$ \pi_1: (x,y,z)=(3,2,4)+m\cdot(1,-2,4)+k\cdot(3,0,1)$$
$$\pi_2: 2x-11y+6z-3=0$$
Development:
We need normal vectors of both planes. To obtain a perpendicular vector to $$\pi_1$$, it is necessary to compute the vector product of its two governing vectors:
$$\vec{n}_1=\begin{vmatrix} and & j & k \\ 1 & -2 & 4\\ 3 & 0 & 1 \end{vmatrix} = -2i+12j+6k-j=-2i+11j+6k=(-2,11,6)$$
$$\vec{n}_2=(2,-11,6)$$
and we can already solve:
$$$ \begin{array}{rl} \alpha =& \arccos \Big( \dfrac{|A_1 A_2+B_1 B_2+C_1 C_2|} {\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} \Big) \\ =& \arccos\Big( \dfrac{|(-2)\cdot2+11\cdot(-11)+6\cdot6|} {\sqrt{(-2)^2+11^2+6^2}\sqrt{2^2+(-11)^2+6^2}} \Big) \\ =& \arccos \Big( \dfrac{21}{161}\Big)= \arccos(0.1304)= 82.51^\circ \end{array}$$$
Solution:
$$\alpha = 82.51^\circ $$