Trigonometric identities: half an angle, double an angle, sum and difference of two angles

Trigonometric relationships of double-angle and half-angle

Known all the ratios of an angle, we can find all the ratios of the double of that angle and its half using the following identities:

  1. sin(2α)=2sinαcosα
  2. cos(2α)=cos2αsin2α
  3. tan(2α)=2tanα1tan2α
  4. sin(α2)=±1cosα2
  5. cos(α2)=±1+cosα2
  6. tan(α2)=±1cosα1+cosα

Example

Given α, of which we know its trigonometric ratios, now we will be able to calculate the ratios of the double-angle and the half-angle. Bearing in mind that α=30, we will compute the ratios of 2α=60 and α2=15.

We have:

sin2α=2sinαcosα=21232=32

cos(2α)=cos2αsin2α=3414=12

tan(2α)=2tanα1tan2α=233113=3

sinα2=1cosα2=1322=234=232

cosα2=1+cosα2=1+322=2+34=2+32

tanα2=1cosα1+cosα=1321+32=232+3=

=232+32+32+3=432+3=12+32323=

=2343=23

Trigonometric relationships of the sum and the difference of two angles

  1. sin(A+B)=sinAcosB+cosAsinB
  2. sin(AB)=sinAcosBcosAsinB
  3. cos(A+B)=cosAcosBsinAsinB
  4. cos(AB)=cosAcosB+sinAsinB
  5. tan(A+B)=tanA+tanB1tanAtanB
  6. tan(AB)=tanAtanB1+tanAtanB

Example

We can calculate the trigonometrical ratios of 45=6015.

sin(6015)=sin60cos15cos60sin15=322+3212232=

=14(6+3323)=22

cos(6015)=cos60cos15+sin60sin15=122+32+32232=

=14(2+3+633)=22

tan(6015)=tan60tan151+tan60tan15=3(23)1+3(23=2321+233=232232=1