Solve and find for which values of $$x$$ for the following inequations:
-
$$2x-3 < 1$$
-
$$x > 3(x+1)$$
- $$-\dfrac{2}{3}(3x-6) \geqslant 2x-1$$
See development and solution
Development:
We are going to solve 3 inequations step by step giving ,at the end, the values of $$x$$ for which the inequation is satisfied.
-
$$2x-3 < 1 \Rightarrow 2x < 1+3 \Rightarrow 2x < 4 \Rightarrow x < \dfrac{4}{2} \Rightarrow x < 2$$.
-
$$x > 3(x+1) \Rightarrow x > 3x+3 \Rightarrow x- 3x > 3 \Rightarrow -2x > 3 \Rightarrow x > \dfrac{3}{-2} $$.
- $$-\dfrac{2}{3}(3x-6) \geqslant 2x-1 \Rightarrow -\dfrac{2}{3}\cdot 3x + \dfrac{2}{3} \cdot 6 \geqslant 2x-1 \Rightarrow$$ $$\Rightarrow-2x + 4 \geqslant 2x-1 \Rightarrow 4+1 \geqslant 2x + 2x \Rightarrow 5 \geqslant 4x \Rightarrow \dfrac{5}{4} \geqslant x$$.
Solution:
-
$$x < 2$$
-
$$ x > \dfrac{3}{-2} $$
- $$ x \leqslant \dfrac{5}{4}$$