Problems from First degree inequations

Solve and find for which values of $$x$$ for the following inequations:

  1. $$2x-3 < 1$$

  2. $$x > 3(x+1)$$

  3. $$-\dfrac{2}{3}(3x-6) \geqslant 2x-1$$
See development and solution

Development:

We are going to solve 3 inequations step by step giving ,at the end, the values of $$x$$ for which the inequation is satisfied.

  1. $$2x-3 < 1 \Rightarrow 2x < 1+3 \Rightarrow 2x < 4 \Rightarrow x < \dfrac{4}{2} \Rightarrow x < 2$$.

  2. $$x > 3(x+1) \Rightarrow x > 3x+3 \Rightarrow x- 3x > 3 \Rightarrow -2x > 3 \Rightarrow x > \dfrac{3}{-2} $$.

  3. $$-\dfrac{2}{3}(3x-6) \geqslant 2x-1 \Rightarrow -\dfrac{2}{3}\cdot 3x + \dfrac{2}{3} \cdot 6 \geqslant 2x-1 \Rightarrow$$ $$\Rightarrow-2x + 4 \geqslant 2x-1 \Rightarrow 4+1 \geqslant 2x + 2x \Rightarrow 5 \geqslant 4x \Rightarrow \dfrac{5}{4} \geqslant x$$.

Solution:

  1. $$x < 2$$

  2. $$ x > \dfrac{3}{-2} $$

  3. $$ x \leqslant \dfrac{5}{4}$$
Hide solution and development
View theory