Logarithmic, exponential and trigonometric direct integrals

Direct integrals for the logarithm

These are the integrals of functions of the type kx1 and they are solved as follows:

k1x dx=kx1 dx=kln|x|+C

since

ddx(kln|x|+C)=ddxkln|x|+0=kddxln|x|=k1x

Let's observe that the result is the logarithm of the absolute value, for the logarithm of a negative number does not exist.

Due to the properties of the logarithms, if a>0:

1xlna dx=loga|x|+C

Example

1x dx=ln|x|+C

151x dx=151x dx=15ln|x|+C

1xln5 dx=log5|x|+C

Exponential integrals

Since we know that the derivative of the function ex is itself then,

ex dx=ex+C

and using the properties of the logarithms, if a>0 and a1:

ax dx=axlna+C

Example

3ex dx=3ex+C

3x dx=3x dx=3xln3+C

4x+4ex dx=4x dx+4ex dx=4xln4+4ex+C

Trigonometric integrals

We can use what we learned about taking the derivatives of trigonometric functions (sine, cosine, tangent, arctangent, etc.) to integrate:

sinx dx=cosx+C

cosx dx=sinx+C

1cos2x dx=tanx+C

11x2 dx=arcsinx+C

11x2 dx=arccosx+C

1a+x2 dx=arctanx+C

Example

2sinx dx=2cosx+C

5cosx+3sinx dx=5cosx dx+3sinx dx=5sinx3cosx+C

31+x2 dx=3arctanx+C