An expression like
The "radical" word derives from the Latin word "radix", which means "root". Now we will learn how to deal with expressions that have radical signs.
Till now we were calculating powers of integer exponents. But what happens if the exponent is a fraction?
For example,
Namely, managing fractional exponents we will use of the following equality:
For example:
Example
The expression
The index of the root (except in case of a square root) is placed in the aperture of the radical symbol. The index says which root we are trying to extract from the radicand.
For instance
Remember that if it is possible to determine the square root of a number, then it is always possible to determine two of them.
Radicals that have the same index and the same radicand are similar.
Similar radicals can have different coefficients in front of the radical sign.
The common operations with powers continue to apply because we are still working with powers, but now with fractional exponents.
This way, for example,
Example
therefore this way of passing from radicals to powers allows us to manage expressions that contain roots much more easily.
Let's see another example:
Example