Calculate the following polynomial division $$\dfrac{x^4-2x+3}{x^2-2}$$
Development:
We complete and we design the initial table
$$x^4$$ | $$0$$ | $$0$$ | $$-2x$$ | $$3$$ | $$x^2-2$$ |
Step 1:
$$\dfrac{x^4}{x^2}=x^2$$
$$x^2\cdot(x^2-2)=x^4-2x^2$$
$$x^4$$ | $$0$$ | $$0$$ | $$-2x$$ | $$3$$ | $$x^2-2$$ |
$$-x^4$$ | $$0$$ | $$+2x^2$$ | $$0$$ | $$0$$ | $$x^2$$ |
$$0$$ | $$0$$ | $$+2x^2$$ | $$-2x$$ | $$3$$ |
Step 2:
$$\dfrac{2x^2}{x^2}=2$$
$$2\cdot(x^2-2)=2x^2-4$$
$$x^4$$ | $$0$$ | $$0$$ | $$-2x$$ | $$3$$ | $$x^2-2$$ |
$$-x^4$$ | $$0$$ | $$+2x^2$$ | $$0$$ | $$0$$ | $$x^2+2$$ |
$$0$$ | $$0$$ | $$+2x^2$$ | $$-2x$$ | $$3$$ | |
$$-2x^2$$ | $$0$$ | $$+4$$ | |||
$$0$$ | $$-2x$$ | $$7$$ |
The process ends here because:
degree$$(-2x+7)=1 < 2=$$degree$$(x^2-2)$$
Solution:
Quotient: $$x^2+2$$
Reminder: $$-2x+7$$