Invent a $$3\times3$$ matrix and compute its determinant.
Development:
$$B=\left(\begin{matrix} 3 & 1 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{matrix} \right)$$
$$det(B)=\left|\begin{matrix} 3 & 1 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{matrix} \right|=3\cdot1\cdot0+0\cdot1\cdot(-1)+1\cdot1\cdot2-(-1)\cdot1\cdot1-2\cdot1\cdot3-0\cdot1\cdot0=$$
$$=0+0+2+1-6-0=-3$$
Solution:
$$det(B)=-3$$