Ejercicios de Fórmula de Stiefel

Expresar los siguientes números combinatorios como suma de dos números combinatorios: $$$ \begin{pmatrix} 100 \\ 96 \end{pmatrix}, \quad \begin{pmatrix} 84 \\ 27 \end{pmatrix}, \quad \begin{pmatrix} 2n-1 \\ n \end{pmatrix}, \quad \begin{pmatrix} 14 \\ x-4 \end{pmatrix}$$$

Ver desarrollo y solución

Desarrollo:

$$ \begin{pmatrix} 100 \\ 96 \end{pmatrix}=\begin{pmatrix} 99 \\ 96 \end{pmatrix} + \begin{pmatrix} 99 \\ 95 \end{pmatrix}$$

$$\begin{pmatrix} 84 \\ 27 \end{pmatrix}=\begin{pmatrix} 83 \\ 26 \end{pmatrix} + \begin{pmatrix} 83 \\ 27 \end{pmatrix}$$

$$\begin{pmatrix} 2n-1 \\ n \end{pmatrix}= \begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix} + \begin{pmatrix} 2n-2 \\ n \end{pmatrix}$$

$$\begin{pmatrix} 14 \\ x-4 \end{pmatrix}= \begin{pmatrix} 13 \\ x-5 \end{pmatrix} + \begin{pmatrix} 13 \\ x-4 \end{pmatrix}$$

Solución:

$$\begin{pmatrix} 99 \\ 96 \end{pmatrix} + \begin{pmatrix} 99 \\ 95 \end{pmatrix}$$

$$\begin{pmatrix} 83 \\ 26 \end{pmatrix} + \begin{pmatrix} 83 \\ 27 \end{pmatrix}$$

$$\begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix} + \begin{pmatrix} 2n-2 \\ n \end{pmatrix}$$

$$\begin{pmatrix} 13 \\ x-5 \end{pmatrix} + \begin{pmatrix} 13 \\ x-4 \end{pmatrix}$$

Ocultar desarrollo y solución
Ver teoría