Dóna els cinc primers termes de les successions amb terme general:
a) $$a_n=(-1)^n(n+2)$$
b) $$b_n=\dfrac{(n+1)(n-1)}{2n^2}$$
c) $$c_n=3n^2-12$$
d) $$d_0=0$$, $$d_1=1$$ i $$d_{n+1}=d_n+d_{n-1}$$ (La successió de Fibonacci).
Desenvolupament:
a) $$$a_1=(-1)^1(1+2)=-1\cdot3=-3$$$ $$$a_2=(-1)^2(2+2)=+1\cdot4=4$$$ $$$a_3=(-1)^3(3+2)=-1\cdot5=-5$$$ $$$a_4=(-1)^4(4+2)=+1\cdot6=6$$$ $$$a_5=(-1)^5(5+2)=-1\cdot7=-7$$$
b) $$$b_1=\dfrac{(1+1)(1-1)}{2\cdot1^2}=\dfrac{1\cdot0}{2}=0$$$ $$$b_2=\dfrac{(2+1)(2-1)}{2\cdot2^2}=\dfrac{3\cdot1}{8}=\dfrac{3}{8}$$$ $$$b_3=\dfrac{(3+1)(3-1)}{2\cdot3^2}=\dfrac{4\cdot2}{18}=\dfrac{4}{9}$$$ $$$b_4=\dfrac{(4+1)(4-1)}{2\cdot4^2}=\dfrac{5\cdot3}{32}=\dfrac{15}{32}$$$ $$$b_5=\dfrac{(5+1)(5-1)}{2\cdot5^2}=\dfrac{6\cdot4}{50}=\dfrac{12}{25}$$$
c) $$$c_1=3\cdot1^2-12=3-12=-9$$$ $$$c_2=3\cdot2^2-12=12-12=0$$$ $$$c_3=3\cdot3^2-12=27-12=15$$$ $$$c_4=3\cdot4^2-12=48-12=36$$$ $$$c_5=3\cdot5^2-12=75-12=63$$$
d) $$$d_0=0$$$ $$$d_1=1$$$ $$$d_2=d_1+d_0=1+1=2$$$ $$$d_3=d_2+d_1=2+1=3$$$ $$$d_4=d_3+d_2=3+2=5$$$ $$$d_5=d_4+d_3=5+3=8$$$ $$$d_6=d_5+d_4=8+5=13$$$
Solució:
a) $$a_n=(-3,4,-5,6,-7,\ldots)$$
b) $$b_n=\Big(0,\dfrac{3}{8},\dfrac{4}{9},\dfrac{15}{32},\dfrac{12}{25},\ldots\Big)$$
c) $$c_n=(-9,0,15,36,63,\ldots)$$
d) $$d_n=(0,1,2,3,5,\ldots)$$