Calcula
- $$d_5\Big(3,-\dfrac{1}{8} \Big)$$
- $$d_2\Big(\dfrac{1}{3},\dfrac{3}{5} \Big)$$
- $$d_{13}\Big(\dfrac{22}{17},\dfrac{1}{12} \Big)$$
Desenvolupament:
-
Per la definició de distància tenim $$$d_5\Big(3,-\dfrac{1}{8} \Big)=\Big|3-\dfrac{-1}{8}\Big|_5 = \Big|\dfrac{3\cdot8+1}{8}\Big|_5 = \Big|\dfrac{25}{8}\Big|_5$$$
Segons les notacions anteriors: $$a=25$$ i $$b=8$$ amb $$m=1$$ i $$n=8$$ i també $$r=2$$ i $$s=0$$. Llavors: $$$\Big|\dfrac{25}{8}\Big|_5=5^{s-r}=5^{0-2}=\dfrac{1}{25}$$$
i tenim $$$d_5\Big(3,-\dfrac{1}{8} \Big)=\dfrac{1}{25}$$$
-
Per la definició de distància tenim $$$d_2 \Big(\dfrac{1}{3},\dfrac{3}{5} \Big)=\Big|\dfrac{1}{3}-\dfrac{3}{5}\Big|_2 = \Big|\dfrac{1\cdot5-3\cdot3}{3\cdot5}\Big|_2 = \Big|\dfrac{-4}{15}\Big|_2$$$
Segons les notacions anteriors: $$a=-4$$ i $$b=15$$ amb $$m=-1$$ i $$n=15$$ i també $$r=2$$ i $$s=0$$. Llavors: $$$\Big|\dfrac{-4}{15}\Big|_2=2^{s-r}=2^{0-2}=\dfrac{1}{4}$$$
Per tant $$$d_2\Big(\dfrac{1}{3},\dfrac{3}{5} \Big)=\dfrac{1}{4}$$$
-
Per la definició de distància tenim $$$d_{13}\Big(\dfrac{22}{17},\dfrac{1}{12} \Big)=\Big|\dfrac{22}{17}-\dfrac{1}{12}\Big|_{13} = \Big|\dfrac{12\cdot22-1\cdot17}{17\cdot12}\Big|_{13} = \Big|\dfrac{247}{204}\Big|_{13}$$$
Segons les notacions anteriors: $$a=247$$ i $$b=204$$ amb $$m=19$$ i $$n=204$$ i també $$r=1$$ i $$s=0$$. Llavors: $$$\Big|\dfrac{247}{204}\Big|_{13}=13^{s-r}=13^{0-1}=\dfrac{1}{13}$$$
i en conseqüència $$$d_{13}\Big(\dfrac{22}{17},\dfrac{1}{12} \Big)=\dfrac{1}{13}$$$
Solució:
- $$d_5\Big(3,-\dfrac{1}{8} \Big)=\dfrac{1}{25}$$
- $$d_2\Big(\dfrac{1}{3},\dfrac{3}{5} \Big)=\dfrac{1}{4}$$
- $$d_{13}\Big(\dfrac{22}{17},\dfrac{1}{12} \Big)=\dfrac{1}{13}$$