The height of the students of a class is measured, grouping the results in the following table. Calculate the standard deviation.
$$x_i$$ | $$f_i$$ | |
$$[140, 155)$$ | $$147,5$$ | $$3$$ |
$$[155,165)$$ | $$160$$ | $$6$$ |
$$[165,175)$$ | $$170$$ | $$17$$ |
$$[175,190)$$ | $$182,5$$ | $$5$$ |
Development:
The table is filled in to make easier to calculate the average and the standard deviation:
$$x_i$$ | $$f_i$$ | $$x_i f_i$$ | $$|x_i-\overline{x}|$$ | $$|x_i-\overline{x}|\cdot f_i$$ | |
$$[140, 155)$$ | $$147,5$$ | $$3$$ | $$442,5$$ | ||
$$[155,165)$$ | $$160$$ | $$6$$ | $$960$$ | ||
$$[165,175)$$ | $$170$$ | $$17$$ | $$2890$$ | ||
$$[175,190)$$ | $$182,5$$ | $$5$$ | $$912,5$$ | ||
$$5205$$ |
To be able to fill in the last 2 columns the average is calculated $$\overline{x}=\dfrac{5205}{31}=167,9$$
$$x_i$$ | $$f_i$$ | $$x_i f_i$$ | $$|x_i-\overline{x}|$$ | $$|x_i-\overline{x}|\cdot f_i$$ | |
$$[140, 155)$$ | $$147,5$$ | $$3$$ | $$442,5$$ | $$20,4$$ | $$61,2$$ |
$$[155,165)$$ | $$160$$ | $$6$$ | $$960$$ | $$7,9$$ | $$47,4$$ |
$$[165,175)$$ | $$170$$ | $$17$$ | $$2890$$ | $$2,1$$ | $$35,7$$ |
$$[175,190)$$ | $$182,5$$ | $$5$$ | $$912,5$$ | $$14,6$$ | $$73$$ |
$$5205$$ | $$217,3$$ |
The standard deviation is then $$D_{\overline{x}}=\dfrac{217,3}{31}=7,01$$.
Solution:
With these values, we have $$D_{\overline{x}}=7,01$$