Problems from Complex numbers in trigonometric form: product and quotient

Calculate: $$\dfrac{21\cdot[\cos(225^\circ)+i\cdot \sin(225^\circ)]}{9\cdot[\cos(180^\circ)+i\cdot \sin(180^\circ)]}$$

See development and solution

Development:

$$ \dfrac{21\cdot[\cos(225^\circ)+i\cdot \sin(225^\circ)]}{9\cdot[\cos(180^\circ)+i\cdot \sin(180^\circ)]}=\dfrac{27}{9}\cdot [\cos(225^\circ-180^\circ)+i\cdot\sin(225^\circ-180^\circ)]$$

$$ =3\cdot [\cos(45^\circ)+i\cdot\sin(45^\circ)]=3\cdot e^{i45^\circ}$$

Solution:

$$3\cdot e^{i45^\circ}$$

Hide solution and development

Write the following complex numbers in the trigonometric form:

See development and solution

Development:

  • First we change it to polar form $$$\displaystyle z=3+3i \ \Rightarrow \ \left\{ \begin{array}{l} |z|=\sqrt{3^2+3^2}=\sqrt{18} \\ \alpha=\arctan\big( \dfrac{3}{3} \big) =45^\circ \end{array} \right\} \Rightarrow \ z=\sqrt{18}_{45^\circ}$$$

    And now we calculate the trigonometric form: $$$z=\sqrt{18}\cdot[\cos(45^\circ)+i\cdot \sin(45^\circ)]=\sqrt{18}\cdot e^{i45^\circ}$$$

  • Since it is already written in polar form it is straight forward that: $$$z=5\cdot[\cos(180^\circ)+i\cdot \sin(180^\circ)]=5\cdot e^{i180^\circ}$$$

Solution:

  • $$z=\sqrt{18}\cdot e^{i45^\circ}$$
  • $$z=5\cdot e^{i180^\circ}$$
Hide solution and development
View theory