Calculate: $$\dfrac{21\cdot[\cos(225^\circ)+i\cdot \sin(225^\circ)]}{9\cdot[\cos(180^\circ)+i\cdot \sin(180^\circ)]}$$
Development:
$$ \dfrac{21\cdot[\cos(225^\circ)+i\cdot \sin(225^\circ)]}{9\cdot[\cos(180^\circ)+i\cdot \sin(180^\circ)]}=\dfrac{27}{9}\cdot [\cos(225^\circ-180^\circ)+i\cdot\sin(225^\circ-180^\circ)]$$
$$ =3\cdot [\cos(45^\circ)+i\cdot\sin(45^\circ)]=3\cdot e^{i45^\circ}$$
Solution:
$$3\cdot e^{i45^\circ}$$