Problems from Conversion from decimal base into another system of numeration

Convert the following numbers into ternary system.

$$(17)_{10}$$

$$(89)_{10}$$

$$(121)_{10}$$

$$(3D)_{18}$$

See development and solution

Development:

We have to do all the possible integer divisions of the numbers by $$3$$:

$$\begin{eqnarray} &(17)_{10} \Rightarrow & 17 & |\underline{3} & & \\\\ & & \fbox{2} & 5 & |\underline{3} & \\\\ & & & \fbox{2} & \fbox{1} \end{eqnarray}$$

So that:

$$(17)_{10}=(122)_3$$

In the second case:

$$\begin{eqnarray} &(89)_{10} \Rightarrow & 89 & |\underline{3} & & & & \\\\ & & \fbox{2} & 29 & |\underline{3} & & & \\\\ & & & \fbox{2} & 9 & |\underline{3} & & \\\\ & & & & \fbox{0} & 3 & |\underline{3} \\\\ & & & & & \fbox{0} & \fbox{1} \end{eqnarray}$$

Then,

$$(89)_{10}=(10022)_3$$

In the third number of the exercise:

$$\begin{eqnarray} &(121)_{10} \Rightarrow & 121 & |\underline{3} & & & & \\\\ & & \fbox{1} & 40 & |\underline{3} & & & \\\\ & & & \fbox{1} & 13 & |\underline{3} & & \\\\ & & & & \fbox{1} & 4 & |\underline{3} \\\\ & & & & & \fbox{1} & \fbox{1} \end{eqnarray}$$

The equivalent is:

$$(121)_{10}=(11111)_3$$

Finally, in the last exercise it is necessary to combine the decomposition with the divisions, since the number is not in base $$10$$ but in base $$18$$.

First, into decimal:

$$(3D)_{18}=(3(13))_{18}=3\cdot18^1+13\cdot18^0=54+13=67$$

Now, to find the equivalent of $$67$$ in ternary, it is necessary to divide the above mentioned number successively by $$3$$:

$$\begin{eqnarray} &(67)_{10} \Rightarrow & 67 & |\underline{3} & & & \\\\ & & \fbox{1} & 22 & |\underline{3} & & \\\\ & & & \fbox{1} & 7 & |\underline{3} \\\\ & & & & \fbox{1} & \fbox{2} \end{eqnarray}$$

So

$$(3D)_{18}=(2111)_3$$

Solution:

$$(122)_3$$

$$(10022)_3$$

$$(11111)_3$$

$$(2111)_3$$

Hide solution and development
View theory