Determine the scalar product of $$\vec{u}$$ and $$\vec{v}$$:
- $$\vec{u}=(1,2)$$, $$\ \vec{v}=(3,-2)$$
- $$\vec{u}=(1,0)$$, $$\ \vec{v}=(0,-2)$$
- $$\vec{u}=(-1,2)$$, $$\ \vec{v}=(3,0)$$
Development:
We use the analytical expression of the scalar product: $$\vec{u}\cdot\vec{v}= u_1 v_1+u_ 2 v_2$$.
- $$\vec{u}\cdot\vec{v}= u_1 v_1+u_ 2 v_2= 1\cdot3+(-2)\cdot 2=-1$$
- $$\vec{u}\cdot\vec{v}= u_1 v_1+u_ 2 v_2=1\cdot0+0\cdot(-2)=0$$
- $$\vec{u}\cdot\vec{v}= u_1 v_1+u_ 2 v_2=(-1)\cdot3+2\cdot0=-3$$
Solution:
- $$\vec{u}\cdot\vec{v}=-1$$
- $$\vec{u}\cdot\vec{v}= 0$$
- $$\vec{u}\cdot\vec{v}= -3$$