Problems from Distance between two straight lines in space

Calculate the distance between:

$$r:(x,y,z)=(2,1,3)+k\cdot(2,1,-1)$$

$$r':(x,y,z)=(-1,-1,4)+k\cdot(1,3,-2)$$

See development and solution

Development:

We start by determining the relative position of the straight lines.

First we verify that the governing vectors are not linearly dependent: $$$\left. \begin{array}{l} \vec{v}=(2,-1,1) \\ \vec{v}'=(1,3,-2) \end{array} \right\} \Rightarrow \dfrac{2}{1}\neq\dfrac{-1}{3}\neq\dfrac{1}{-2}$$$

The straight lines $$r$$ and $$r'$$ intersect or cross.

We take a point $$A$$ of $$r$$ and a point $$A'$$ of $$r'$$, and see if $$\{\overrightarrow{AA'},\vec{v},\vec{v}'\}$$ are linearly dependent or independent: $$$\left. \begin{array}{l} A = (2, 1, 3)\\ A' = (-1, -1, 4) \end{array} \right\} \Rightarrow \overrightarrow{AA'}=(-3,-2,1)$$$

$$$\begin{vmatrix} 2 & 1 & -3 \\ -1 & 3 & -2 \\ 1 & -2 & 1 \end{vmatrix} =0 \Rightarrow \text{rank}\big(\{\overrightarrow{AA'},\vec{v},\vec{v}'\}\big)=0$$$

Therefore the straight lines r and r' intersect and $$\text{d}(r,r') = 0$$.

Solution:

$$\text{d}(r,r') = 0$$

Hide solution and development
View theory