Equation of the horizontal hyperbolas

imagen

In this part we will deal with horizontal hyperbolas with the center in a generic point C(x0,y0).

The focal axis is parallel to the abscissa axis, and therefore the foci are in the coordinates F(x0c,y0) and F(x0+c,y0).

Applying these foci to the general definition of the hyperbola PFPF=2a we obtain the expression (xx0+c)2+(yy0)2(xx0c)2+(yy0)2=2a

On having added the root, and raising to the square: ((xx0+c)2+(yy0)2)2=(2a+(xx0c)2+(yy0)2)2(xx0+c)2+(yy0)2=4a2+4a(xx0c)2+(yy0)2++(xx0c)2+(yy0)2(xx0)2+2(xx0)c+c2+(yy0)2=4a2+4a(xx0c)2+(yy0)2++(xx0)22(xx0)c+c2+(yy0)2

Simplifying and dividing by four: 4(xx0)c=4a2+4a(xx0c)2+(yy0)2(xx0)c=a2+a(xx0c)2+(yy0)2

On having cleared the root and having squared again: (c(xx0)a2)2=(a(xx0c)2+(yy0)2)2c2(xx0)22a2c(xx0)+a4=a2((xx0)2+(yy0)2c2(xx0)22a2c(xx0)+a4=a2((xx0)22c(xx0)+x2+(yy0)2)c2(xx0)22a2c(xx0)+a4=a2(xx0)22ac(xx0)+a2c2+a2(yy0)2c2(xx0)2a2(xx0)2a2(yy0)2=a2c2a4(c2a2)(xx0)2a2(yy0)2=a2(c2a2)

We divide by a2(c2a2) to obtain 1 on the right: (c2a2)(xx0)2a2(c2a2)a2(yy0)2a2(c2a2)=1(xx0)2a2(yy0)2(c2a2)=1

Applying the definition c2=a2+b2, b2=c2a2 is replaced and we get the desired equation: (xx0)2a2(yy0)2b2=1

Example

Find the equation of the hyperbola of center C(2,3), apex A(2,6) and focus F(2,7).

The focal distance c=73=4a=63=3 With c2=a2+b2, so b=c2a2=169=7.

Substituting in (xx02)a2(yy0)2b2=1 and identifying C(x0,y0), we prove (x2)29(y3)27=1