Problems from Fundamental concepts of vectors

Compute the components of the vectors whose origin and end are given by the following points:

  1. Origin $$(-1,3)$$, end $$(0,6)$$.
  2. Origin $$(2,-1)$$, end $$(1,1)$$.
  3. Origin $$(5,1)$$, end $$(-2,1)$$.
  4. Compute the norm of the vectors obtained in the previous points.
See development and solution

Development:

We subtract the components of the ending point from those of the origin.

  1. $$(0,6)-(-1,3)=(1,3)$$.
  2. $$(1,1)-(2,-1)=(-1,2)$$.
  3. $$(-2,1)-(5,1)=(-7,0)$$.
  4. We use the formula $$|\vec{u}|=\sqrt{u_1^2+u_2^2}$$, to obtain: $$\begin{array}{l} |(1,3)|=\sqrt{1^2+3^2}=\sqrt{10} \\ |(-1,2)|=\sqrt{(-1)^2+2^2}=\sqrt{5} \\ |(-7,0)|=\sqrt{(-7)^2+0^2}=\sqrt{49}=7 \end{array} $$

Solution:

  1. $$(1,3)$$
  2. $$(-1,2)$$
  3. $$(-7,0)$$
  4. $$\sqrt{10}$$, $$\sqrt{5}$$, $$7$$
Hide solution and development

Determine the values of $$x$$ and $$y$$ so that the following identities hold:

  1. $$(x,y)-3(2,5)=(4,1)$$
  2. $$2(1,x)+3(y,2)=(8,-2)$$
  3. Compute the norm of the vectors $$(4,1)$$ and $$(8,-2)$$.
See development and solution

Development:

  1. $$(x,y)=(4,1)+3(2,5)=(4,1)+(6,15)=(10,16)$$ and we have $$x=10$$, $$y=16$$.
  2. $$2(1,x)+3(y,2)=(2,2x)+(3y,6)=(2+3y,2x+6)=(8,-2)$$. $$$ \left. \begin{array}{l} 2+3y=8 \\ 2x+6=-2 \end{array} \right\} \Rightarrow x=-4, \ y=2$$$
  3. We apply the formula $$|\vec{u}|=\sqrt{u_1^2+u_2^2}$$ to our vectors.

    For the first one we obtain: $$|(4,1)|=\sqrt{4^2+1^2}=\sqrt{17}$$.

    And for the second one: $$|(8,-2)|=\sqrt{8^2+(-2)^2}=\sqrt{68}=2\sqrt{17}$$.

Solution:

  1. $$(4,2)$$
  2. $$(10,16)$$
  3. $$\sqrt{17}$$ and $$2\sqrt{17}$$
Hide solution and development

Compute the components of the ending point of the vector $$\overrightarrow{AB}=(-2,5)$$ if we know that the origin $$A$$ is $$(1,1)$$. And find the norm of the vector $$\overrightarrow{AB}$$.

See development and solution

Development:

Since we have obtained the components of the vector by subtracting the components of the end from those of the origin, we have: $$$ (b_1,b_2)=(-2,5)+(1,1)=(-1,6)$$$ The norm of the vector $$\overrightarrow{AB}$$ by using the formula $$|\vec{u}|=\sqrt{u_1^2+u_2^2}$$ will be: $$$ |\overrightarrow{AB}|=|(-2,5)|=\sqrt{(-2)^2+5^2}=\sqrt{4+25}=\sqrt{29}$$$

Solution:

$$(-1,6)$$, $$\sqrt{29}$$.

Hide solution and development
View theory