Compute the components of the vectors whose origin and end are given by the following points:
- Origin $$(-1,3)$$, end $$(0,6)$$.
- Origin $$(2,-1)$$, end $$(1,1)$$.
- Origin $$(5,1)$$, end $$(-2,1)$$.
- Compute the norm of the vectors obtained in the previous points.
Development:
We subtract the components of the ending point from those of the origin.
- $$(0,6)-(-1,3)=(1,3)$$.
- $$(1,1)-(2,-1)=(-1,2)$$.
- $$(-2,1)-(5,1)=(-7,0)$$.
- We use the formula $$|\vec{u}|=\sqrt{u_1^2+u_2^2}$$, to obtain: $$\begin{array}{l} |(1,3)|=\sqrt{1^2+3^2}=\sqrt{10} \\ |(-1,2)|=\sqrt{(-1)^2+2^2}=\sqrt{5} \\ |(-7,0)|=\sqrt{(-7)^2+0^2}=\sqrt{49}=7 \end{array} $$
Solution:
- $$(1,3)$$
- $$(-1,2)$$
- $$(-7,0)$$
- $$\sqrt{10}$$, $$\sqrt{5}$$, $$7$$