Problems from General method for the calculation of determinants

Invent a $$4\times4$$ matrix and compute its determinant.

See development and solution

Development:

$$C=\left(\begin{matrix} 1 & 0 & 1 & 0 \\ 0 & 3 & 1 & -1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{matrix} \right)$$

$$det(C)=1\cdot det(B)+ 1\cdot\left|\begin{matrix} 0 & 3 & -1 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{matrix} \right|=$$

$$1\cdot(-3)+1\cdot[0\cdot0\cdot0+1\cdot1\cdot(-1)+0\cdot2\cdot3-0\cdot0\cdot(-1)-1\cdot2\cdot0-0\cdot1\cdot3]=$$

$$=-3+(0-1+0-0-0-0)=-3-1=-4$$

Solution:

$$det(C)=-2$$.

Hide solution and development
View theory