Find the terms that are in the fourth and eighth position in the geometric progression with reason $$r=0,3$$ and the first term $$a_1=1,25.$$
Development:
We know that the general term of our progression is:
$$$a_n=1,25\cdot (0,3)^{n-1}=\dfrac{5}{4}\cdot \Big(\dfrac{3}{10}\Big)^{n-1}$$$
So the terms we are looking for are:
$$$a_4=\dfrac{5}{4}\cdot \Big(\dfrac{3}{10}\Big)^{3}=\dfrac{5\cdot27}{4\cdot 1.000}=\dfrac{135}{4.000}=0,03375$$$
$$$a_8=\dfrac{5}{4}\cdot \Big(\dfrac{3}{10}\Big)^{7}=\dfrac{5\cdot2.187}{4\cdot 10.000.000}=\dfrac{10.935}{40.000.000}=0,000273$$$
Solution:
$$a_4=3,37\cdot 10^{-2}$$ and $$a_8=2,73\cdot 10^{-4}.$$