Problems from Indeterminate form 0 x infinity

Calculate the following limit:

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x+1}{3x^2}\cdot\dfrac{x^2}{x-1}}$$

See development and solution

Development:

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x+1}{3x^2}\cdot\dfrac{x^2}{x-1}}=0\cdot\infty$$

As this limit $$x+1\approx x$$ y $$x-1\approx x$$

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x\cdot x^2}{3x^2\cdot x}}=\dfrac{1}{3}$$

Solution:

$$\dfrac{1}{3}$$

Hide solution and development

Calculate the following limit:

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{\sqrt{x}}{x^2}\cdot(x^3+1)}$$

See development and solution

Development:

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{\sqrt{x}}{x^2}\cdot(x^3+1)}=0\cdot\infty$$

As this limit $$x^3+1\approx x^3$$

$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x^3\sqrt{x}}{x^2}}=\lim_{x \to{+}\infty}{x\sqrt{x}}=+\infty$$

Solution:

$$+\infty$$

Hide solution and development
View theory