Calculate the following limit:
$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x+1}{3x^2}\cdot\dfrac{x^2}{x-1}}$$
See development and solution
Development:
$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x+1}{3x^2}\cdot\dfrac{x^2}{x-1}}=0\cdot\infty$$
As this limit $$x+1\approx x$$ y $$x-1\approx x$$
$$\displaystyle\lim_{x \to{+}\infty}{\dfrac{x\cdot x^2}{3x^2\cdot x}}=\dfrac{1}{3}$$
Solution:
$$\dfrac{1}{3}$$