Problems from Infinite sums of series

Calculate the value of the following fraction, supposing that in the numerator and in the denominator there are infinite terms:

$$\dfrac{-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\ldots}{\dfrac{3}{5}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{45}+\ldots}$$

See development and solution

Development:

We firstly study the value of the numerator: $$-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\ldots$$

This is the sum of a geometric progression of the first term $$a_1=-\dfrac{1}{2}$$, and ratio $$r=\dfrac{1}{2}$$, so it is:

$$$-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\ldots = \sum_{n\geq 1}-\dfrac{1}{2^n}=\dfrac{-\dfrac{1}{2}}{1-\dfrac{1}{2}}=-1$$$

Next we look at the value of the denominator: $$\dfrac{3}{5}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{45}+\ldots$$

It is the sum of a geometric progression, this time the first term is $$b_1=\dfrac{3}{5}$$ and ratio $$r=\dfrac{1}{3}$$, so:

$$$\dfrac{3}{5}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{45}+\ldots = \sum_{n\geq 1}\dfrac{1}{5\cdot 3^{n-2}}=\dfrac{\dfrac{3}{5}}{1-\dfrac{1}{3}}=\dfrac{9}{10}$$$

This way we have:

$$$\dfrac{-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\ldots}{\dfrac{3}{5}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{45}+\ldots} = \dfrac{-1}{\dfrac{9}{10}}=-\dfrac{10}{9}$$$

Solution:

$$-\dfrac{10}{9}$$

Hide solution and development
View theory