Calculate:
- The center and the radius of the interval $$[-\sqrt{5},2].$$
- The endpoints of the interval of center $$-\dfrac{1}{3}$$ and radius $$1$$.
See development and solution
Development:
-
The center of an interval is: $$$C=\dfrac{a+b}{2}=\dfrac{2-\sqrt{5}}{2}=1-\dfrac{\sqrt{5}}{2}$$$ and the radius is: $$$d(a,C)=d \Big(-\sqrt{5},1-\dfrac{\sqrt{5}}{2}\Big)=\Big|1-\dfrac{\sqrt{5}}{2}+\sqrt{5}\Big|=1+\dfrac{\sqrt{5}}{2}$$$
- The lower endpoint is: $$a=C-r=-\dfrac{1}{3}-1=-\dfrac{4}{3},$$ and the uppe endpoint is: $$b=C+r=-\dfrac{1}{3}+1=\dfrac{2}{3}.$$
Solution:
- $$C=1-\dfrac{\sqrt{5}}{2}$$ and $$r=1+\dfrac{\sqrt{5}}{2}$$
- $$a=-\dfrac{4}{3}$$ and $$b=\dfrac{2}{3}.$$