Solve the following system with the equalization method:
$$\left.\begin{array}{c} 3x-2(3y+5)-10=7 \\ 4(x-3)+2y=-3+y \end{array} \right\}$$
Development:
Before using the equalization method, we need to simplify the equations a little bit. We will obtain a simpler system of equations with the same solution. In the first equation: $$$3x-2(3y+5)-10=7 \Rightarrow 3x-6y-10-10=7 \Rightarrow 3x-6y=7+10+10 \Rightarrow$$$ $$$\Rightarrow 3x-6y=27$$$ Also, we can divide all the coefficients by $$3$$, so that we obtain $$ \dfrac{3x-6y=27}{3} \Rightarrow x-2y=9$$.
The second equation of the system is simplified as follows: $$$4(x-3)+2y=-3+y \Rightarrow 4x-12+2y-y=-3 \Rightarrow 4x+y=-3+12 \Rightarrow 4x+y=9$$$ With these two simplified equations we can use the equalization method: $$$\left.\begin{array}{c} x-2y=9 \\ 4x+y=9 \end{array} \right\} \Rightarrow \left.\begin{array}{c} x=9+2y \\ 4x=9-y \end{array} \right\} \Rightarrow \left.\begin{array}{c} x=9+2y \\ x=\dfrac{9-y}{4} \end{array} \right\}$$$
The expressions need to be equal and we have $$y$$: $$$9+2y=\dfrac{9-y}{4} \Rightarrow 4(9+2y)=9-y \Rightarrow 36+8y=9-y \Rightarrow 8y+y=9-36 \Rightarrow$$$ $$$9y=-27 \Rightarrow y=\dfrac{-27}{9}=-3$$$
The value is then replaced in order to obtain $$x$$: $$$x=9+2y \Rightarrow x=9+2(-3)=9-6=3$$$
Solution:
$$x=3; y=-3$$