How many terms of a geometric progression $$a: (1, 0.1, 0.01, 0.001, 0.0001, \ldots)$$ is it necessary to multiply to find the number $$10^{-45}$$?
Development:
The general term of the succession with the first term $$a_1=1$$ and ratio $$r=\dfrac{a_2}{a_1}=\dfrac{0.1}{1}=0.1=\dfrac{1}{10}$$, is
$$$a_n=\dfrac{1}{10^{n-1}}$$$
We want to find a natural $$m$$ in such a way that the product of the $$m$$ first terms of the succession is $$10^{-45}$$, that is to say, that
$$$P_m=\prod_{n=1}^m \dfrac{1}{10^{n-1}} = 1^{10}\cdot 10^{-45}$$$
but we know that:
$$$P_m=\sqrt{(a_1\cdot a_m)^m}=\sqrt{ \Big(1\cdot \dfrac{1}{10^{m-1}}\Big)^m}$$$
And by comparing both expressions, we have:
$$$10^{-45}= \sqrt{ \Big(\dfrac{1}{10^{m-1}}\Big)^m}$$$
And by isolating the variable of this rational equation:
$$$\Big(\dfrac{1}{10^{m-1}}\Big)^{\frac{m}{2}}=10^{-45} \Rightarrow \dfrac{1}{10^{\frac{m}{2}(m-1)}}=\dfrac{1}{10^{45}} \Rightarrow$$$
$$$10^{\frac{m(m-1)}{2}}=10^{45} \Rightarrow \dfrac{m^2-m}{2}=45 \Rightarrow$$$
$$$m^2-m-90=0$$$
So we only have to solve this equation of the second grade:
$$$m^2-m-90=0 \Rightarrow m=\{10,-9\}$$$
We know that $$m$$ must be a positive integer, so the solution is $$m=10$$.
Solution:
It is necessary to add the $$10$$ first terms.