Prove that a determinant with a repeated column is zero (prove it for order 3 or higher).
Development:
The first step is to construct the matrix, in this case $$3\times3$$, in the most general way possible but with a repeated column. That one is $$$A=\left(\begin{matrix} a & d & a \\ b & e & b \\ c & f & c \end{matrix} \right)$$$ let's now calculate the determinant (we can do it by means of the general method or using the rule of Sarrus) $$$det(A)=\left|\begin{matrix} a & d & a \\ b & e & b \\ c & f & c \end{matrix} \right|=\cancel{a\cdot e\cdot c}+\bcancel{b\cdot f \cdot a} + \xcancel{c \cdot d \cdot b}$$$ $$$ - \cancel{a \cdot e \cdot c} - \bcancel{b\cdot f \cdot a} - \xcancel{c \cdot d \cdot b} = 0$$$
Solution:
$$det(A)=0$$