Properties of the operations with intervals

Some important properties of the operations with intervals are as follows; given $$J$$ and $$K$$ two intervals any:

  • $$J \subseteq (J\cup K)$$ and $$K \subseteq (J\cup K)$$
  • $$(J\cap K) \subseteq J$$ and $$(J\cap K) \subseteq K$$
  • if $$J \subseteq K$$ then $$\overline{K} \subseteq \overline{J}$$
  • $$\overline{J\cup K}=\overline{J}\cap\overline{K}$$ and $$\overline{J\cap K}=\overline{J}\cup\overline{K} $$
  • $$\overline{(\overline{K})}=K$$, and in particular, as $$\overline{\emptyset}=\mathbb{R},$$ we have $$\overline{\mathbb{R}}=\overline{\overline{\emptyset}}=\emptyset.$$

In addition, regarding the length of the intervals we have:

  • if $$J\subseteq K$$ then $$long(J)\leq long(K)$$
  • $$long(J\cup K) \leq long(J) + long(K)$$
  • $$max(long(J),long(K)) \leq long(J\cup K)$$
  • $$long(J\cap K) \leq max(long(J),long(K))$$
  • $$long(J)$$ is finite iff $$long(\overline{J})$$ is not.