Problems from Ruffini's rule

Do the division $$\dfrac{p(x)}{q(x)}$$, where $$p(x)=-x^4+ax^3-3x^2+2x-3$$ and $$q(x)=x-2$$, and impose the value of the parameter $$a$$ so that the division has a remainder equal to $$3$$.

See development and solution

Development:

We apply Ruffini's rule:

  $$-1$$ $$+a$$ $$-3$$ $$+2$$ $$-3$$
$$2$$   $$-2$$ $$2(a-2)$$ $$2(2(a-2)-3)$$ $$2(2(2(a-2)-3)+2)$$
  $$-1$$ $$a-2$$ $$2(a-2)-3$$ $$2(2(a-2)-3)+2$$ $$2(2(2(a-2)-3)+2)-3$$

Therefore, now we have to solve the following equation:

$$2(2(2(a-2)-3)+2)-3=3$$

So:

$$2(2(2(a-2)-3)+2)-3=3 \Leftrightarrow 2(2(2(a-2)-3)+2)=0 \Leftrightarrow$$

$$2(2(a-2)-3)+2=0 \Leftrightarrow 2(2(a-2)-3)=-2 \Leftrightarrow$$

$$2(a-2)-3=-1 \Leftrightarrow 2(a-2)=2 \Leftrightarrow a=3$$

Solution:

With the value of $$a=3$$, the result of the division has a remainder equal to $$3$$.

Hide solution and development
View theory