Problems from Ruffini's rule

Do the division p(x)q(x), where p(x)=x4+ax33x2+2x3 and q(x)=x2, and impose the value of the parameter a so that the division has a remainder equal to 3.

See development and solution

Development:

We apply Ruffini's rule:

  1 +a 3 +2 3
2   2 2(a2) 2(2(a2)3) 2(2(2(a2)3)+2)
  1 a2 2(a2)3 2(2(a2)3)+2 2(2(2(a2)3)+2)3

Therefore, now we have to solve the following equation:

2(2(2(a2)3)+2)3=3

So:

2(2(2(a2)3)+2)3=32(2(2(a2)3)+2)=0

2(2(a2)3)+2=02(2(a2)3)=2

2(a2)3=12(a2)=2a=3

Solution:

With the value of a=3, the result of the division has a remainder equal to 3.

Hide solution and development
View theory