Problems from Vector product

If a=(2,1,1), b=(4,2,2), c=(4,2,2). Compute the vector product a×b, b×c and a×c.

See development and solution

Development:

We apply the formula of the vector product:

a×b=|ijk211422|=|1122|i+(1)|2142|j+|1122|k=(0,0,0)

b×c=|ijk422011|=|2211|i+(1)|4201|j+|4101|k=(4,4,4)

a×c=|ijk211011|=|1111|i+(1)|2101|j+|1101|k=(2,2,2)

Solution:

(0,0,0), (4,4,4) and (2,2,2)

Hide solution and development

If a=(0,1,0), b=(1,1,0). Compute the vector product a×b and b×a.

See development and solution

Development:

We apply the formula of the vector product:

a×b=c=|ijk010110|=|1010|i+(1)|0010|j+|0111|k=(0,0,1)

b×a=c=|ijk110010|=|1010|i+(1)|1000|j+|1101|k=(0,0,1)

Solution:

(0,0,1) and (0,0,1)

Hide solution and development

If a=(1,2,3), b=(2,1,0). Compute the vector product a×b and b×a.

See development and solution

Development:

We apply the formula of the vector product:

c=(c1,c2,c3)=|ijka1a2a3b1b2b3|=|a2a3b2b3|i+(1)|a1a3b1b3|j+|a1a2b1b2|k

a×b=c=|ijk123210|=|2310|i+(1)|1320|j+|1221|k=(3,6,5)

b×a=c=|ijk210122|=|1023|i+(1)|2013|j+|2112|k=(3,6,5)

We can see that if we switch the order in the vector product we obtain the same vector but it will be in the opposite sense (right-handed or left-handed).

Solution:

(3,6,5) and (3,6,5)

Hide solution and development
View theory