If $$\vec{a}=(2,1,-1)$$, $$\vec{b}=(4,2,-2)$$, $$\vec{c}=(4,2,-2)$$. Compute the vector product $$\vec{a}\times\vec{b}$$, $$\vec{b}\times\vec{c}$$ and $$\vec{a}\times\vec{c}$$.
Development:
We apply the formula of the vector product:
$$$\vec{a}\times\vec{b}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 4 & 2 & -2 \end{vmatrix}= \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \vec{i} + (-1)\begin{vmatrix} 2 & -1 \\ 4 & -2 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \vec{k}=(0,0,0)$$$
$$$\vec{b}\times\vec{c}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 2 & -2 \\ 0 & -1 & -1 \end{vmatrix}= \begin{vmatrix} 2 & -2 \\ -1 & -1 \end{vmatrix} \vec{i} + (-1)\begin{vmatrix} 4 & -2 \\ 0 & -1 \end{vmatrix} \vec{j} + \begin{vmatrix} 4 & -1 \\ 0 & -1 \end{vmatrix} \vec{k}=(-4,4,-4)$$$
$$$\vec{a}\times\vec{c}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -1 \\ 0 & -1 & -1 \end{vmatrix}= \begin{vmatrix} 1 & -1 \\ -1 & -1 \end{vmatrix} \vec{i} + (-1)\begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} \vec{k}=(-2,2,-2)$$$
Solution:
$$(0,0,0)$$, $$(-4,4,-4)$$ and $$(-2,2,-2)$$