Octaedro regular: Área y volumen

El octaedro es un poliedro de ocho caras que es regular cuando todas las caras son triángulos equiláteros.

imagen

Las siguientes expresiones permiten encontrar el área y el volumen del octaedro
A=23a2V=23a3

Ejemplo

a) Definir las dimensiones de un octaedro (arista a).

b) Imaginar que este octaedro es un iceberg, con su corte en forma de cuadrado (base de las dos pirámides que lo forman) paralelo al mar. Una pequeña pirámide cuadrada de altura h queda fuera del agua, y el octaedro entero tiene altura 2h (h es la altura de cada una de las dos pirámides que componen el octaedro). Encontrar la altura de medio octaedro, h.

imagen

c) Decidir un porcentaje razonable de h respecto a h para un iceberg, y encuentre el parámetro a.

d) ¿Qué porcentaje del volumen del octaedro esta fuera del agua?

e) ¿Cuál es el área de las caras completamente sumergidas del iceberg (las cuatro inferiores)?

Veamos la solución.

a) Se define una arista a=10 m, razonable para que el octaedro sea un iceberg.

b) Para encontrar h, se encuentra primero la altura del triángulo de una de las caras laterales Ap. 102=Ap2+(102)2Ap=53

Aplicando de nuevo el teorema de Pitágoras, ahora con el triángulo cuyos catetos son h y a2, y cuya hipotenusa es Ap, se obtiene la altura de medio octaedro ,h: Ap2=h2+(a2)2(53)2=h2+52h=7525=52=7,07 m

c) Se define h=0,2h=1,41 m, lo que resulta razonable teniendo en cuenta que la mayor parte de un iceberg siempre está sumergida.

Se aplica el teorema de Tales para encontrar la arista de la pirámide que queda fuera del agua: aa=hh=0,2a=2 m

d) Se calcula, en primer lugar, el volumen total del octaedro: V=23a3 donde a=10 m. Voctaedro=471,4 m3

Seguidamente, se calcula el volumen de la pirámide que queda fuera del agua: Vfuera del agua=a2h3=1,88 m3 El porcentaje del volumen fuera del agua es 1,88471,4100=0,39%

e) Basta con calcular el área del octaedro y dividirla por 2: Aoctaedro2=12(23a2) donde a=10 Aoctaedro2=173,2 m2