Calcula las siguientes operaciones:
1) $$160_{300^{\circ}}:(4_{76^{\circ}}\cdot 12_{12^{\circ}})=$$
2) $$\sqrt[3]{27_{130^{\circ}}}=$$
Desarrollo:
1) Primero haremos el producto: $$ 4_{76^{\circ}}\cdot 12_{12^{\circ}} =(4\cdot 12)_{76^{\circ}+12^{\circ}}=48_{88^{\circ}} $$
Y ahora ya podemos hacer la división: $$160_{300^{\circ}}:(4_{76^{\circ}}\cdot 12_{12^{\circ}})=160_{300^{\circ}}:48_{88^{\circ}}={\dfrac{160}{48}}_{300^{\circ}-88^{\circ}} = {\dfrac{10}{3}}_{212^{\circ}}$$
2) $$\sqrt[3]{27_{130^{\circ}}}= \sqrt[3]{27}_{\frac{130^{\circ}+360^{\circ}k}{3}}= 3_{\frac{130^{\circ}+360^{\circ}k}{3}} \ $$ para $$ \ k=0,1,2$$.
Así: $$$ \displaystyle \sqrt[3]{27_{130^{\circ}}}= \left\{ \begin{array}{l} 3_{\frac{130}{3}^{\circ}} \\ 3_{\frac{490}{3}^{\circ}} \\ 3_{\frac{850}{3}^{\circ}} \end{array} \right. $$$
Solución:
1) $${\dfrac{10}{3}}_{212^{\circ}}$$
2) $$$\begin{array}{l} z_1=3_{\frac{130}{3}^{\circ}} \\ z_2= 3_{\frac{490}{3}^{\circ}} \\ z_3=3_{\frac{850}{3}^{\circ}} \end{array} $$$