Si a partir de l'equació contínua de la recta operem i agrupem termes obtenim: $$$\displaystyle \begin{array}{rcl} \frac{x-p_1}{v_1} &=&\frac{y-p_2}{v_2} \\ v_2(x-p_1) &=& v_1(y-p_2)\\ v_2 \cdot x-v_2 \cdot p_1&=& v_1 \cdot y-v_1\cdot p_2 \\ v_2\cdot x-v_1 \cdot y+(v_1\cdot p_2-v_2\cdot p_1)&=&0 \\ Ax+By+C&=& 0\end{array}$$$
On evidentment,$$$\begin{array}{rcl}A&=&v_2 \\ B&=& -v1\\ C&=& v_1\cdot p_2 - v_2 \cdot p_1 \end{array}$$$Una propietat interessant d'aquesta equació és que $$\overrightarrow {v}=(-B,A)$$ és un vector director de la recta, i per tant $$\overrightarrow{w}=(A,B)$$ és un vector perpendicular a la recta.
Trobeu l'equació implícita de la recta $$r$$:$$$\displaystyle \frac{x-3}{-5}=\frac{y-4}{2}$$$
Operant i passant tots els termes de banda obtenim: $$$\begin{array}{rcl} 2(x-3) &=& -5 (y-4) \\ 2x-6 &=& -5y+20 \\ 2x+5y-6-20 &=& 0 \\ 2x+5y-26&=&0\end{array}$$$
Per tant l'equació implícita és $$2x + 5y - 26 = 0$$ i el vector $$\overrightarrow{v} = (-5, 2)$$ és un vector director de la recta.