Let $$U$$ be a region of $$\mathbb{R}^3$$, then a scalar field $$f$$ is a function $$$ \begin{array}{ccc} f:U \subseteq \mathbb{R} ^3 & \longrightarrow & \mathbb{R} \\ (x,y,z) & \longrightarrow & f(x,y,z)\end{array}$$$ in such way that it assigns to every point $$(x, y, z)$$ of the region $$U$$ only one real value $$f(x, y, z)$$.
On the other hand, let $$V$$ be a region of $$\mathbb{R}^3$$, then a vector field $$F$$ is a function $$$ \begin{array}{ccc} F:V \subseteq \mathbb{R} ^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longrightarrow &(F_{1}(x,y,z),F_{2}(x,y,z),F_{3}(x,y,z))\end{array}$$$ in such a way that it assigns to every point $$(x, y, z)$$ of the region $$U$$ of the space another point of the space.
The following examples are scalar fields $$$f(x,y,z)=x^{y}+3\cdot z$$$ $$$f(x,y,z)=4 \cdot x-\frac{y}{\sqrt{z^2}}+3$$$
The following examples are vector fields: $$$F(x,y,z)=(3\cdot x \cdot z, x-y, z-y)$$$ $$$F(x,y,z)=(4 \cdot \sin (x^2 \cdot y), \sqrt z, y \cdot x-z)$$$