Parametrization of surfaces

In case we want to express a surface in the space, we will need to give it as a function of two variables: φ:U=[a,b]×[c,d]R2SR3, so that for every pair of coordinates (let's call them u, v) the only corresponding surface point is S, and vice versa.

Example

A parametrization of a sphere of radius R is φ:[π2,π2]×[0,2π]R3[θ,α]R(cosθcosα,cosθsinα,sinθ)

Example

A parametrization of an ellipsoid of semiaxes a, b and c is γ:[π2,π2]×[0,2π]R3[θ,α]R(acosθcosα,bcosθsinα,csinθ)

Example

A parametrization of the graph of a function of two variables f(u,v) γ:[a,b]×[c,d]R3[u,v](u,v,f(u,v))

Example

A parametrization of the resultant surface when turning the graph of a function f(x) with respect to the z axes. γ:[a,b]×[0,2π]R3[x,θ](xcosθ,xsinθ,f(x))