Definición de indeterminación

Una indeterminación se produce si al hacer un límite obtenemos una situación que sólo sabiendo el valor de los límites de las funciones que intervienen no podemos asignar un valor al resultado de la operación. Es necesario realizar una investigación más profunda que nos permita llegar al valor de este límite.

Ejemplo

Si f(x)=x y g(x)=1x+1 entonces sabemos que limx+f(x)=+ y limx+g(x)=1 pero no podemos a priori saber el resultado del límite limx+g(x)f(x)=1+

Las principales indeterminaciones son: (+)(+), 0(±), 00, (+)0, 1±, 00, ±± donde todos los valores que aparecen son límites de funciones.

Observemos que tenemos cosas como: Si f(x){limx+1f(x)=limx+1=1limx+0f(x)=limx+0=0limx+f(x)0=limx+0=0limx+01f(x)=limx+0=0 que no producen ninguna indeterminación.