Problemas de relojes

Aprenderemos a resolver ejercicios que en el enunciado incluyen cuestiones relacionadas con los ángulos que forman las agujas de un reloj.

Veamos algún ejemplo práctico directamente.

Ejemplo

Siendo las tres en punto, las agujas del reloj forman un ángulo de 90. ¿Qué ángulo habrá recorrido la aguja horaria al cabo de 10 minutos?

imagen

Y diez minutos más tarde es

imagen

El ángulo descrito que recorre el minutero es siempre 12 veces mayor que el arco que describe la aguja horaria.

Gracias a esta indicación, podremos conocer las posiciones de una y otra como más nos convenga.

Deseamos encontrar el ángulo que ha recorrido la aguja horaria, que es lo mismo que encontrar el arco que ha recorrido.

Por lo tanto digamos que x es el arco que describe la aguja horaria.

El minutero describe un arco de 10+x minutos puesto que nos preguntan qué ángulo formará en cuanto hayan pasado 10 minutos pero la aguja de las horas también va moviéndose.

Teniendo en cuenta la relación entre el minutero y la aguja horaria, tenemos: 10+x=12x

por lo que, x=1011 minutos

Así pues, ya tenemos el arco recorrido por la aguja horaria, es de 1011 minutos=1011 minutos60 segundos1  minuto=106011 segundos= =54 segundos

Entendiendo 54 segundos como un submúltiplo más pequeño que el grado.

Veamos otro tipo de preguntas acerca de relojes.

Ejemplo

Un reloj marca las 3 en punto. Si nos preguntamos a qué hora entre las 3 y las 4 se superpondrán las agujas, debemos proceder de la siguiente manera:

imagen

Llamamos x al arco que describe la aguja horaria. De manera que 15+x será el arco que describe el minutero, puesto que para llegar al principio donde está la hora debe recorrer los 15 minutos que hay desde las 12 (donde está inicialmente el minutero para que sean las 3 en punto) hasta las 3 donde está inicialmente la aguja horaria.

Así, recordando también que el ángulo descrito que recorre el minutero es siempre 12 veces mayor que el arco que describe la aguja horaria, se plantea la siguiente ecuación: (15+x)=12x

Si aislamos la incógnita x, esto es: x=1511 minutos

Por lo tanto las agujas se superpondrán a las 3 y 15+x minutos, que exactamente son: 3h 16 21

Veamos otro ejemplo dónde se trabaje la relación de el ángulo que existe entre el minutero y la aguja horaria.

Ejemplo

Consideramos que un reloj marca las 2 en punto. ¿A qué hora formarán sus agujas por primera vez un ángulo recto?

imagen

Las agujas del reloj forman un ángulo recto cuando marca aproximadamente las 2h 25. Esto lo deducimos del hecho en que cuando la hora marca las 2 en punto, para que el minutero esté en ángulo recto debe estar 15 minutos más que lo que marca la hora, por lo tanto, 15 minutos más que el número 2 (correspondiente a 10 minutos) será 25.

Así pues, si x es el arco que describe la aguja horaria, y 25+x el que describe el minutero, gracias a la relación que el ángulo descrito que recorre el minutero es siempre 12 veces mayor que el arco que describe la aguja horaria, tenemos que: 25+x=12x

En este caso, el resultado que se obtiene es: x=2511 minutos

Por lo tanto las agujas del reloj conformarán un ángulo de 90 a las 2h: 25+x minutos En este caso esto es: 2h 27 16