Hablando con un cierto rigor, la regla para multiplicar matrices dice:
"La matriz producto de dos matrices $$A$$ y $$B$$ es una matriz $$C$$ cuyos elementos $$a_{ij}$$ están formados por las sumas de los productos de los elementos de la fila $$i$$ de la matriz $$A$$ por los de la columna $$j$$ de la matriz $$B$$."
La verdad es que no es un enunciado muy alentador, pero en realidad la cosa es sencilla y sólo requiere un poco de práctica, ya que se trata de multiplicar ordenadamente filas de la primera matriz por columnas de la segunda.
Empecemos con un ejemplo sencillo.
$$$\left( \begin{array}{ccc} 5 & 2 & 1 \end{array} \right) \cdot \left( \begin{array}{c} 4 \\ -3 \\ 6 \end{array} \right) = 5\cdot4+2\cdot(-3)+1\cdot6=20-6+6=20$$$
Es decir, lo que hay que hacer es multiplicar el primer elemento de la fila de la primera matriz por primero de la columna de la segunda matriz, a éste sumarle el producto del segundo de la fila por segundo de la columna y por último sumarle el producto del tercero de la fila por tercero de la columna.
Es más difícil de decir que de hacer. Veamos otro ejemplo:
$$$\left( \begin{array}{ccc} 2 & 3 & 5 \end{array} \right) \cdot \left( \begin{array}{c} 3 \\ 2 \\ 4 \end{array} \right) = 2\cdot3+3\cdot2+5\cdot4=6+6+20=32$$$
Veamos un producto de dos matrices cuadradas $$2\times2$$
$$$\left( \begin{array}{cc} 1 & 5 \\ 2 & 2 \end{array} \right) \cdot \left( \begin{array}{cc} 3 & 4 \\ 1 & 6 \end{array} \right) = \left( \begin{array}{cc} 1\cdot3+5\cdot1 & 1\cdot4+5\cdot6 \\ 2\cdot3+2\cdot1 & 2\cdot4+2\cdot6 \end{array} \right) = \left( \begin{array}{cc} 8 & 34 \\ 8 & 20 \end{array} \right)$$$
Cada elemento $$a_{ij}$$ se obtiene sumando los productos de elementos de la fila $$i$$ por los de la columna $$j$$.
Por ejemplo, el $$8$$, elemento de la primera fila, primera columna del resultado, se obtiene multiplicando la primera fila de la primera matriz por la primera columna de la segunda matriz.
El número $$8$$, que es el elemento de la segunda fila, primera columna de la matriz final, se obtiene multiplicando la segunda fila de la primera matriz por la primera de la segunda, y así todos los elementos.
Para dejar más claro la forma de hacerlo vamos a marcar las filas y columnas correspondientes de la matriz producto:
$$$\left( \begin{array}{cc} \fbox{1} & \fbox{5} \\ 2 & 2 \end{array} \right) \cdot \left( \begin{array}{cc} \fbox{3} & 4 \\ \fbox{1} & 6 \end{array} \right) = \left( \begin{array}{cc} \fbox{8} & 34 \\ 8 & 20 \end{array} \right)$$$
$$$\left( \begin{array}{cc} \fbox{1} & \fbox{5} \\ 2 & 2 \end{array} \right) \cdot \left( \begin{array}{cc} 3 & \fbox{4} \\ 1 & \fbox{6} \end{array} \right) = \left( \begin{array}{cc} 8 & \fbox{34} \\ 8 & 20 \end{array} \right)$$$
$$$\left( \begin{array}{cc} 1 & 5 \\ \fbox{2} & \fbox{2} \end{array} \right) \cdot \left( \begin{array}{cc} \fbox{3} & 4 \\ \fbox{1} & 6 \end{array} \right) = \left( \begin{array}{cc} 8 & 34 \\ \fbox{8} & 20 \end{array} \right)$$$
$$$\left( \begin{array}{cc} 1 & 5 \\ \fbox{2} & \fbox{2} \end{array} \right) \cdot \left( \begin{array}{cc} 3 & \fbox{4} \\ 1 & \fbox{6} \end{array} \right) = \left( \begin{array}{cc} 8 & 34 \\ 8 & \fbox{20} \end{array} \right)$$$
En realidad sólo hay que recordar que se debe multiplicar "fila por columna". Por ejemplo, calculemos en la siguiente matriz cual es el valor del elemento señalado:
$$$\left( \begin{array}{ccccc} 1 & 3 & -2 & 5 & 0 \\ 8 & 1 & 0 & -1 & 2 \\ 4 & 2 & 5 & 3 & 1 \\ 0 & -2 & 3 & 5 & 3 \\ 7 & 1 & 0 & 3 & 7 \end{array} \right) \cdot \left( \begin{array}{ccccc} 2 & 6 & 3 & -1 & 0 \\ 8 & 2 & 4 & 6 & 1 \\ 0 & 2 & 1 & 4 & 3 \\ 1 & 5 & 3 & 7 & 2 \\ 5 & 8 & 3 & 9 & 2 \end{array} \right) = \left( \begin{array}{ccccc} \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{?} & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \end{array} \right)$$$
Deberemos multiplicar la cuarta fila por la tercera columna:
$$$\left( \begin{array}{ccccc} 1 & 3 & -2 & 5 & 0 \\ 8 & 1 & 0 & -1 & 2 \\ 4 & 2 & 5 & 3 & 1 \\ \fbox{0} & \fbox{-2} & \fbox{3} & \fbox{5} & \fbox{3} \\ 7 & 1 & 0 & 3 & 7 \end{array} \right) \cdot \left( \begin{array}{ccccc} 2 & 6 & \fbox{3} & -1 & 0 \\ 8 & 2 & \fbox{4} & 6 & 1 \\ 0 & 2 & \fbox{1} & 4 & 3 \\ 1 & 5 & \fbox{3} & 7 & 2 \\ 5 & 8 & \fbox{3} & 9 & 2 \end{array} \right) =$$$
$$$= \left( \begin{array}{ccccc} \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & 0\cdot3+(-2)\cdot4+3\cdot1+5\cdot3+3\cdot3 & \fbox{ } & \fbox{ } \\ \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } & \fbox{ } \end{array} \right)$$$
O sea que en la matriz producto se tiene que $$a_{43}=19$$.
Veamos otro ejemplo. Haremos el producto de dos matrices $$3\times3$$ (será el caso más complicado que veremos).
$$$\left( \begin{array}{ccc} 2 & 5 & 1 \\ 4 & -2 & 0 \\ 1 & 6 & 2 \end{array} \right) \cdot \left( \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 4 & 1 \\ 1 & -4 & 2 \end{array} \right) = \left( \begin{array}{ccc} 18 & 20 & 13 \\ -2 & 0 & 10 \\ 21 & 18 & 13 \end{array} \right)$$$
Vamos a detallar cómo se han calculado algunos de sus elementos.
El elemento $$a_{11}$$ se obtiene multiplicando primera fila por primera columna:
$$$\left( \begin{array}{ccc} \fbox{2} & \fbox{5} & \fbox{1} \\ 4 & -2 & 0 \\ 1 & 6 & 2 \end{array} \right) \cdot \left( \begin{array}{ccc} \fbox{1} & 2 & 3 \\ \fbox{3} & 4 & 1 \\ \fbox{1} & -4 & 2 \end{array} \right) = \left( \begin{array}{ccc} \fbox{18} & 20 & 13 \\ -2 & 0 & 10 \\ 21 & 18 & 13 \end{array} \right)$$$
$$$2\cdot1+5\cdot3+1\cdot1=2+15+1=18$$$
El elemento $$a_{23}$$ se obtiene multiplicando segunda fila por tercera columna:
$$$\left( \begin{array}{ccc} 2 & 5 & 1 \\ \fbox{4} & \fbox{-2} & \fbox{0} \\ 1 & 6 & 2 \end{array} \right) \cdot \left( \begin{array}{ccc} 1 & 2 & \fbox{3} \\ 3 & 4 & \fbox{1} \\ 1 & -4 & \fbox{2} \end{array} \right) = \left( \begin{array}{ccc} 18 & 20 & 13 \\ -2 & 0 & \fbox{10} \\ 21 & 18 & 13 \end{array} \right)$$$
$$$4\cdot3+(-2)\cdot1+0\cdot2=12-2+0=10$$$
El elemento $$a_{31}$$ se obtiene multiplicando tercera fila por primera columna:
$$$\left( \begin{array}{ccc} 2 & 5 & 1 \\ 4 & -2 & 0 \\ \fbox{1} & \fbox{6} & \fbox{2} \end{array} \right) \cdot \left( \begin{array}{ccc} \fbox{1} & 2 & 3 \\ \fbox{3} & 4 & 1 \\ \fbox{1} & -4 & 2 \end{array} \right) = \left( \begin{array}{ccc} 18 & 20 & 13 \\ -2 & 0 & 10 \\ \fbox{21} & 18 & 13 \end{array} \right)$$$
$$$1\cdot1+6\cdot3+1\cdot2=1+18+2=21$$$
El elemento $$a_{22}$$ se obtiene multiplicando segunda fila por segunda columna:
$$$\left( \begin{array}{ccc} 2 & 5 & 1 \\ \fbox{4} & \fbox{-2} & \fbox{0} \\ 1 & 6 & 2 \end{array} \right) \cdot \left( \begin{array}{ccc} 1 & \fbox{2} & 3 \\ 3 & \fbox{4} & 1 \\ 1 & \fbox{-4} & 2 \end{array} \right) = \left( \begin{array}{ccc} 18 & 20 & 13 \\ -2 & \fbox{0} & 10 \\ 21 & 18 & 13 \end{array} \right)$$$
$$$4\cdot2+(-2)\cdot4+0\cdot2=8-8+0=0$$$
Los elementos restantes de la matriz producto se calculan siguiendo el mismo método.
A estas alturas ya nos habremos dado cuenta de que multiplicar matrices es un tanto engorroso. Pensemos, por ejemplo, que el producto de dos matrices $$4\times4$$ supone llevar a cabo $$128$$ operaciones aritméticas.
Afortunadamente, la mayoría de las calculadoras científicas que hay actualmente en el mercado incluyen el cálculo matricial. Sin embargo, es aconsejable hacer al menos una vez el producto "a mano" de matrices $$3\times3$$. para comprender la mecánica de las operaciones.