Operaciones con fracciones algebraicas

Suma y resta

Para realizar la suma o resta de fracciones algebraicas, primero tenemos que realizar de transformar las fracciones a común denominador, y posteriormente efectuar la suma o resta como si fuera una fracción.

El denominador será el mismo que tienen ambas, y el numerador de la suma o resta será la suma o resta de numeradores.

Ejemplo

Realizar la suma de las siguientes fracciones algebraicas x1x+4 y x2+2x+4

En este caso, ambas fracciones tienen el mismo denominador, por lo que podemos proceder directamente a operar: x1x+4+x2+2x+4=x1+(x2+2)x+4=x2+x+1x+4

Ejemplo

Realizar la resta de las siguientes fracciones algebraicas x2+1x2 y x+1x1

Primero, tenemos que transformar las fracciones algebraicas a fracciones con común denominador:

mcm{x2,x1}=(x2)(x1)

(x2)(x1)(x2)=x1(x1)(x2+1)=x(x2+1)1(x2+1)=

=x3x2+x1x3x2+x1(x2)(x1)

(x2)(x1)(x1)=x2(x1)(x+1)=x21x21(x2)(x1)

Ahora procedemos a operar:

x3x2+x1(x2)(x1)+x21(x2)(x1)=x3x2+x1+(x21)(x2)(x1)=

=x3+x2(x2)(x1)

Ejemplo

Realizar la resta de las siguientes fracciones algebraicas x2x+3 y x1(x+1)2

Primero, tenemos que transformar las fracciones algebraicas a fracciones con común denominador:

mcm{x+3,(x+1)2}=(x+3)(x+1)2

(x+3)(x+1)2x+3=(x+1)2(x2)(x+1)2=x(x+1)2+1(x+1)2=

=x(x2+2x+1)+1(x2+2x+1)=x3+3x2+3x+1

x3+3x2+3x+1(x+3)(x+1)2

(x+3)(x+1)2(x+1)2=x+3(x1)(x+3)=x2+2x3

x2+2x3(x+3)(x+1)2

Ahora procedemos a operar:

x3+3x2+3x+1(x+3)(x+1)2x2+2x3(x+3)(x+1)2=x3+3x2+3x+1(x2+2x3)(x+3)(x+1)2=

=x3+2x2x+4(x+3)(x+1)2

Producto

Para realizar el producto de dos fracciones algebraicas, el numerador del producto será el producto de numeradores y el denominador del producto será el producto de denominadores.

Ejemplo

Realizar el producto de las siguientes fracciones algebraicas x1x+4 y x2+2x2.

Multiplicamos numeradores y denominadores, y obtenemos el resultado deseado:

x1x+4x2+2x2=(x1)(x2+2)(x+4)(x2)=x(x2+2)1(x2+2)x(x2)+4(x2)=

=x3x2+2x2x2+2x8

Ejemplo

Realizar el producto de las siguientes fracciones algebraicas x+5x y x21x+3.

Multiplicamos numeradores y denominadores, y obtenemos el resultado deseado:

x+5xx21x+3=(x+5)(x21)x(x+3)=x(x21)+5(x21)x(x+3)=

=x3+5x2x5x2+3x

División

Para realizar la división de dos fracciones algebraicas, basta multiplicar la fracción algebraica del dividendo por la fracción algebraica del denominador invertida, esto es, el numerador en lugar del denominador, y viceversa.

Ejemplo

Realizar la división de las siguientes fracciones algebraicas x1x+4 y x2+2x2.

Multiplicamos la primera fracción por la segunda invertida, y obtenemos el resultado deseado:

x1x+4x2x2+2=(x1)(x2)(x+4)(x2+2)=x(x2)1(x2)x(x2+2)+4(x2+2)=

=x23x+2x3+4x2+2x+8

Ejemplo

Realizar la división de las siguientes fracciones algebraicas x+5x y x21x+3.

Multiplicamos la primera fracción por la segunda invertida, y obtenemos el resultado deseado:

x+5xx+3x21=(x+5)(x+3)x(x21)=x(x+3)+5(x+3)x(x21)=

=x2+8x+15x3x